[1]王小鸽,薛 巍,赵 君.西安市主城区不透水面光谱分析与识别制图[J].陕西林业科技,2019,(05):32-38.
 WANG Xiao-ge,XUE Wei,ZHAO Jun.Spectral Mixture Analysis and Mapping of Impervious Surfaces in Central Urban of Xi'an[J].,2019,(05):32-38.
点击复制

西安市主城区不透水面光谱分析与识别制图()
分享到:

《陕西林业科技》[ISSN:1006-6977/CN:61-1281/TN]

卷:
期数:
2019年05期
页码:
32-38
栏目:
试验与调查研究
出版日期:
2019-10-25

文章信息/Info

Title:
Spectral Mixture Analysis and Mapping of Impervious Surfaces in Central Urban of Xi'an
文章编号:
1001-2117(2019)05-0032-07
作者:
王小鸽1薛 巍2赵 君2
1.杨凌职业技术学院生态环境工程学院; 2.西北农林科技大学林学院,陕西 杨凌712100
Author(s):
WANG Xiao-ge1 XUE Wei2 ZHAO Jun2
1.Yangling Vocational &Technical College, Yangling, Shaanxi 712100; 2.College of Forestry, Northwest A&F University, Yangling, Shaanxi 712100
关键词:
不透水面 光谱混合分析 最小噪音分量变换 遥感 西安市
Keywords:
Impervious surface spectral mixture analysis minimum noise fraction transform remote sensing
分类号:
TP79
文献标志码:
A
摘要:
城市不透水面在监测城市扩展和解释人类活动对生态环境的影响方面起着非常重要的作用。遥感技术以其时效性和空间强大的观测能力,可迅速从遥感图像中提取城市不透水面信息。本文以西安市主城区为对象,采用最小噪音分量变换法提取了Landsat TM影像中城市不透水面信息,即首先选取最小噪音分量变换后的前3个分量和线性光谱混合模型,计算得出高反照率、低反照率、植被、土壤4个模拟城市不同土地覆盖类型的终端地类分量,再通过综合低反照率、高反照率等2个终端地类得到西安市主城区不透水面的空间分布和面积数据,并以图展示。
Abstract:
Urban impervious surface is important monitoring indicator, reflecting urban expansion and impacts from human activities on the environment.The impervious surface information can be extracted quickly from remote sensing imagery for its time-efficient and high ability of spatial monitoring.In this paper, a minimum noise fraction(MNF)transformation has been applied to a Landsat 5 Thematic Mapper Plus(TM)sub-scene of Xi'an city.The first three components produced from the MNF transformation were selected.Through a linear spectral mixture model, four end members, i.e.low albedo, high albedo, vegetation, and soil were identified to represent the heterogeneous urban land cover types by combining low and high albedo components.Finally the impervious surface fraction was estimated.Extracting impervious surface quickly would provide a foundation for urban construction and green-land planning.

参考文献/References:

[1] 潘竟虎, 李晓雪, 刘春雨.兰州市中心城区不透水面覆盖度的遥感估算[J].西北师范大学学报,2009,45(4):95-100.
[2] RIDD MK.Exploring A V-I-S(vegetation-impervious surface-soil)model for urban ecosystem analysis through remote sensing[J].International Journal of Remote Sensing, 1995, 16(12):2165-2185
[3] Ji M H, Jensen J R.Effectiveness of subpixel analysis in detecting and quantifying urban imperviousness from Landsat thematic mapper imagery[J].Geocar to International, 1999, 14(4):31-39.
[4] Wu C, Mumay AT.Estimating impervious surface distribution by spectral mixture analysis [J].Remote Sensing of Environment, 2003, 84(4):493-505.
[5] 杨凯文.城市不透水面遥感估算[J].现代测绘, 2012, 35(3): 11-14.
[6] 马雪梅, 雷秀丽, 李希峰,等.基于数据挖掘技术的流域不透水面及变化信息提取[J].测绘通报,2007(12):34-37.
[7] 李彩丽,都金康, 左天惠.基于高分辨率遥感影像的不透水面信息提取方法研究[J].遥感应用,2009(5):36-40
[8] Slonecker ET, Jennings D, Garofalo D.Remote sensing of impervious surface: A review[J].Remote Sensing Reviews, 2001, 20(3): 227-255.
[9] USGS Landsat7 Science Data Users Handbook[EB/OL].http://www.gsfc nasa gov/IAS/handbook.1999-04-15.
[10] 徐涵秋.基于影像的Landsat TM/ETM+的数据正规化技术[J].武汉大学学报(自然科学版),2007,32(1):62-66.
[11] 徐涵秋.利用改进的归一化差异水体指数提取水体信息的研究[J].遥感学报,2005, 9(5):585-595.
[12] 岳文泽,吴次芳.基于混合光谱分解的城市不透水面估算[J].遥感学报,2007,(11)6:914-922.
[13] Wu C, Mumay AT Estimating impervious surface distribution by spectral mixture analysis[J].Remote sensing of Environment, 2003, 84(4):493-505.
[14] Green AA, Berman M, Switer P.A transformation for ordering multispectral data in in terms of image quality with implications for noises remove[J].IEEE Transactions on Geoscience and Remote Sensing, 1990, 28(3):295-304.
[15] 赵英时.遥感应用分析原理与方法[M].北京:科学出版社,2002.
[16] 梅安新, 彭望琭, 秦其明,等.遥感应用分析原理与方法[M].北京:科学出版社,2002.
[17] 穆亚超, 颉耀文, 张玲玲, 等.1994-2015年兰州市不透水面变化分析[J].地理空间信息, 2017(15)2:94-98.
[18] 杨华杰.基于Landsat遥感数据的杭州不透水地面提取与分析[D].杭州:浙江大学,2013.

备注/Memo

备注/Memo:
收稿日期:2019-09-05
基金项目:杨凌示范区科技计划项目(2017NY-18); 陕西GEF项目区典型生态系统固碳测算及恢复(K3380217017)。
作者简介:王小鸽(1978-),女,河南洛阳人,博士,研究方向为园林规划设计与3S技术。
更新日期/Last Update: 2019-10-25